你不知道的AlphaGO

3月9日至3月15日,谷歌研发的围棋的人工智能AlphaGO将与十年传奇棋手李世石九段进行五番棋较量。
那么,关于这个曾经以5:0完胜欧洲围棋冠军的AlphaGO,你又了解多少呢?
AlphaGo是什么?
AlphaGo是一款围棋人工智能程序,由位于英国伦敦的谷歌(Google)旗下DeepMind公司的戴维·西尔弗、艾佳·黄和戴密斯·哈萨比斯与他们的团队开发。这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。使用了神经网路加上MCTS (Monte Carlo tree search),并且用上了巨大的谷歌云计算资源,结合CPU+GPU,加上从高手棋谱和自我学习的功能。这套系统比以前的围棋系统提高了接近1000分的Elo,从业余5段提升到可以击败职业2段的水平,超越了前人对围棋领域的预测,更达到了人工智能领域的重大里程碑。
AlphaGo是科学的创新突破吗?
AlphaGo是一套设计精密的卓越工程,也达到了历史性的业界里程碑,不过Nature文章中并没有新的“发明”,AlphaGo的特点在于:不同机器学习技术的整合(例如:reinforcement learning, deep neural network, policy+value network, MCTS的整合可谓创新)、棋谱学习和自我学习的整合、相对非常可扩张的architecture(让其充分利用谷歌的计算资源)、CPU+GPU并行发挥优势的整合。这套“工程”不但有世界顶级的机器学习技术,也有非常高效的代码,并且充分发挥了谷歌世界最宏伟的计算资源(不仅仅是比赛使用,训练AlphaGo时也同样关键)。
AlphaGo的跳跃式成长来自哪几个因素?
1)15-20名世界顶级的计算机科学家和机器学习专家(这是围棋领域从未有的豪华团队:也许你觉得这不算什么,但是要考虑到这类专家的稀缺性),2)前面一点提到的技术、创新、整合和优化。3)全世界最浩大的谷歌后台计算平台,供给团队使用,4)整合CPU+GPU的计算能力。
AlphaGo是个通用的大脑,可以用在任何领域吗?
AlphaGo里面的深度学习、神经网络、MCTS,和AlphaGo的扩张能力计算能力都是通用的技术。AlphaGo的成功也验证了这些技术的可扩展性。但是,AlphaGo其实做了相当多的围棋领域的优化;除了上述的系统调整整合之外,里面甚至还有人工设定和调节的一些参数。AlphaGo的团队在Nature上也说:AlphaGo不是完全自我对弈end-to-end的学习(如之前同一个团队做Atari AI,用end-to-end,没有任何人工干预学习打电动游戏)。如果AlphaGo今天要进入一个新的应用领域,用AlphaGo的底层技术和AlphaGo的团队,应该可以更快更有效地开发出解决方案。这也就是AlphaGo真正优于深蓝的地方。但是上述的开发也要相当的时间,并且要世界上非常稀缺的深度计算科学家(现在年待遇行情已达250万美金)。所以,AlphaGo还不能算是一个通用技术平台,不是一个工程师可以经过调动API可以使用的,而且还距离比较远。
如果这次AlphaGo没有打败李世乭,那还要多久呢?
IBM深蓝从进入大师级别到比赛击败世界冠军花了四年。AlphaGo应该会比深蓝更快提升自己,因为深蓝需要新版本的硬件,和针对Kasparov的人工调节优化,而AlphaGo是基于谷歌的硬件计算平台,和相对通用的深度学习算法。所以,几个月太短,4年太长,就预计1-2年之间吧。
从国际象棋到围棋,到底是不是巨大的突破呢?
肯定是的。在1997年深蓝击败世界冠军时,大家都认为:深蓝使用的是人工调整的评估函数,而且是用特殊设计的硬件和“暴力”的搜索 (brute-force) 征服了国际象棋级别的复杂度。但是围棋是不能靠穷举的,因为它的搜索太广(每步的选择有几百而非几十)也太深(一盘棋有几百步而非几十步)。而AlphaGo的发展让我们看到了,过去二十年的发展,机器学习+并行计算+海量数据是可以克服这些数字上的挑战的,至少足以超越最顶尖的人类。
各位看官,你们觉得,AlphaGo与李世石的这场较量,谁会笑到最后呢?
更多精彩内容,请关注“全球创新论坛” 新浪官方微博及微信公众账号:bdqqcxlt